

CubeSats in Türkiye

Prof.Dr. Alim Rustem Aslan

Manager and founder, Space Systems Design and Test Laboratory Istanbul Technical University, Faculty of Aeronautics and Astronautics, Istanbul, Turkiye, aslanr@itu.edu.tr, http://usttl.itu.edu.tr

Space Systems Design and Test Laboratory UST

Prof.Dr. Alim Rüstem ASLAN

Astronautical Engineering Department Istanbul Technical University, Turkey National Defense University, Turkiye

- Manager and founder, Space Systems Design and Test Laboratory
- Manager and founder , SmallSat Communication Laboratory
- International Academy of Astronautics Member
- UZTED, President
- UNISEC-GLOBAL SC Member
- NATO CSO-STO AVT National Panel Member
- TA1ALM

Area of expertise: Design, analysis and development of pico- and nanosatellite (9 in orbit – 3 deorbited), manned and unmanned rotorcraft systems (including prototypes), computational fluid dynamics and aerodynamics, propulsion and, defense and education technologies. Worldwide hands on cansat, cubesat and rocketry course delivery.

With a history stretching back almost 250 years (1773), providing technical education within a modern educational environment and strong academic staff, **Istanbul Technical University (İTÜ) is strongly identified with architectural and engineering education in Turkey**

Department of Astronautical Engineering since 1983

- ITU, as a modern research University, has a global vision in research and education.
- İTÜ provides Astronautical Engineering education since 1986.
- Applied studies include Development of CanSats, CubeSats and nano/micro satellites, de-orbiting systems, environmental tests of nano satellites and satellites subsystems, and rocketry with interdisciplinary team work.
- ITUpSAT1, the first Turkish CubeSat developed by İTÜ is in orbit for over 14 years (Launch 23.09.2009).

- ITU has started practical space studies in late 2005.
- The worldwide CubeSat projects and declared Turkish Space Program were both pivotal in starting practical space projects.
- Space testing facilities were also established, to aid rapid and reliable development of spacecraft components.
- Large scale educational state projects were very helpful in establishing the testing infrastructure, providing the required large budgets for their procurement.
- TUBITAK funding for start up establishment has been essential
- The CubeSats projects have attracted more and more students, first from the department and then from many other related departments, particularly, from electrical and electronics, computers, telecoms and mechanical.

ITU, Astronautical Engineering

TÜ 🎯

- Establishment 1983 (ITU 1773)
- 60 new ug students per year + Graduate students
- Space related labs
 - Spacecraft Systems Design and Testing
 - Small Satellite communication
- Aim:
 - Research and testing on space systems and components
 - To have engineers with laboratory experience to serve the (inter)national aerospace industry

Astronautical Engineering Curriculum

- Education in space science and Technologies, 2 Space labs, 60 students/year
- Follows AIAA recomendations
- Fully Accredited by ABET till 2030
- Space related undergraduate courses (+ graduate program with advanced topics)
 - Intro. to Astronautical Engineering&Design (CanSat Application) (1st year)
 - Aerospace Materials and Structures (2nd year)
 - Orbital Mechanics, (3rd year)
 - Space environment, (3rd year)
 - Spacecraft Attitude Determination and Control (3rd)
 - Spacecraft communications (3rd)
 - Rocket and Electric Propulsion (4th)
 - Spacecraft system design with application (SSDI-II) (4th)
- Electives:
 - Basic Astronomy, Space Law, Applic.of Satellite-Based Data

- Established in 2007 in Istanbul Technical University, Istanbul.
- SSDTL includes a net 350lt thermal-vacuum chamber (TVAC), used particularly for testing nano/micro satellites or satellite components smaller than 40x40x60cm.
- Thermal-Cycling and Bake-Out testing are carried out. Ports for RF and electronic system control are available. 25 simultaneous temperature measurements can be taken.
- TVAC opens in to a 25m2 class 1000 clean room (capable of class 100) where spacecraft integration is also done. The temperature, pressure and humidity are controlled in the clean room environment.
- The workshop of the SSDTL has devices and capability for integration of the subsystems of nano/micro-scale spacecraft and for operational testing of the subsystems and the whole systems.
- The first Turkish satellite in Turkey has been designed, manufactured and tested in ITU-SSDTL and sent to space in September 23rd, 2009 and has been in operation since then successfully.
- Since then, many other CubeSats and larger satellite subsystems have been tested.

ISTANBUL TERNIK ÜNIVERSITESI

Auerkander Dapitup

ITÜ-SSDTL Space Systems Design and Test Lab

ISTANBUL TERNIK UNIVERSITESI

Astriander Capitop

Türkiye's most satellite building & launching institution Türkiye'nin en çok uydu yapan kurumu

ITU-SSDTL has completed 7 CubeSats in the lab (all launched), and supported many others into orbit.

ISTANBUL TEKNİK ÜNİVERSİTESİ Asərbərlər Çupduş

ITU-SSDTL TARGETS

EDUCATE AND TRAIN ENGINEERS ON SPACE SYSTEMS, SATELLITES AND ROCKETS

DEVELOP NANOSAT SYSTEMS TO ADVANCES KNOWLEDGE SCIENCE AND TECHNOLOGY

Increase capacity of subsystems

- To improve comm speed
- To improve data transfer rates
- To improve agility
- To improve power generation
- To improve lifetime in low orbits
- To improve space Env tolerances Fault tolerant Software architectures Ground station non amatuers

HELP NATIONAL and REAGIONAL SPACE TECHNOLOGY DEVELOPMENT KEEP IT MULTIDISCIPLINARY, INTERNATIONAL AND MULTI INSTITUTIONAL

- Analyses of missions
- Earth orbiters
- Travels to moon and Mars
- Randevouz with space objects

On board propulsion SYSTEMS, Water based SYSTEMS, Hybrid rocket development

Launched nanosatellites

ISTANBUL TEKNIK UNIVERSITESI

Aserbarder Dapósp

TOTAL SPACE SYSTEM

ISTANBUL TERNIK ÜNIVERSITESI

Austriandin Corpilap

USTAL

Figure 1.2 Objectives and requirements of a spacecraft mission

İTÜ-SSDTL Development phases

Istanbul Technical University - Faculty of Aeronautics and Astronautics

http://usl.itu.edu.tr

İTÜpSAT1 (2009)

Launched with swisscube, BeeSat and UWE-2

ITUpSAT1, ITU Space Eng. first practical space project. Launced on 23.09.2009, still operational. The project was a major step in increasing space awarness among students. TÜBİTAK 1001, 106M082

PSLV C-14

ISTANBUL TERNİK ÜNİVERSİTESİ

Asarbander Capitop

ITUpSAT I Operation Modes

TURKSAT-3USAT, fully industry supported 3 unit communication CubeSat project. Launched on 26.04.2013.

ISTANBUL TERNIK ÜNIVERSITESI Justurile Copius

JiGuan Space Center - China May 2013 TAMSAT 3U-SAT TRANSPONDER LAUNCH

ISTANBUL TEKNIK ÜNIVERSITESI

Austriandar Quipósip

- BeEagleSAT: İTÜ, HHO, SU, SMEs, Havelsan (UTEB Project).
- 2 CubeSats of 32 2U in QB50
- HavelSat: ITU and Havelsan

<u>IT</u>

BEEAGLESAT

ISTANBUL TEKNIK ÜNIVERSİTESİ

Asarlandar Çaşbisş

BEEAGLESAT/HAVELSAT

Asarlander Çaşıkış

BEEAGELSAT DEPLOYMENT ISS

ISTANBUL TERNIK ÜNIVERSITESI

Asarbardar Dagdag

- HAVELSAT deployed on 16 May 2017
- BEEAGLESAT deployed on 26 May 2017
- Both were heard by many amateur stations
- Followed by ITU GS
- First few weeks HAVELSAT was usually in eclipse, issues with voltage values, frequent resets, Then recovered normal values
- BEEAGLESAT had good sun shine!
- High tip off rates for both CubeSats about 15-20 deg/sec

Australie Capitap

UBAKUSAT

HAVACILIK VE UZAY TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ

UBAKUSAT

Cooperation in the field of space and aeronautics (宇宙・航空分野に関する協力)

JAXA and Republic of Turkey's Ministry of Transport, Maritime Affairs and Communications (JAXAとトルコ共和国 運輸海事通信省)

- Provision of opportunity for long duration material exposure (材料などの長期曝露実験機会)
- Deployment of one cubesat (3U) (超小型衛星1機 (3U)の放出)

TURKEY

- Ministry of Transport Maritime Affairs and Communications
- Istanbul Tecnical University
- TAMSAT/AMSAT-TR
- Ertek Ltd. (SME)
- Gumush Space(SME)
- TURKSAT INC
- Turkish Aerospace Industry
- UNISEC-TR

JAPAN

- Ministry of Education, Culture, Sports, Science and Technology(MEXT)
- Japan Aerospace Exploration Agency(JAXA)
- Kyushu Institute of Technology

TURKEY

- Develop and test 3U CubeSat, UBAKUSAT
- Compliance with JEM Payload Accommodation Handbook
- Transport to KIT/Japan
- Transport to JAXA/Japan

JAPAN

- Further Testing of UBAKUSAT
- Assist in document preparation for Launch
- Launch

UBAKSAT MAIN MISSION: Voice Comms

UBAKUSAT, Details

Mass 3.2 kg 10*10*34cm, 3U CubeSat

Main payload a VHF/UHF Transponder

Input Frequency	145.940 - 145.990 MHz
Output Frequency	435.200 – 435.250 MHz
Transponder Type	Inverting – Linear
Modulation	All Mode (AM, FM, SSB, CW, FSK,etc.)
Bandwidth	50 KHz
RF Power (max)	1 Watt - 30 dB

- Battery 30Whr
- Passive Magnetic Stabilization system

ASELSAT MISSION for ASELSAN Company

TVAC TESTING

ISTANBUL TEKNIK ÜNIVERSITESI

Asarlander Capitap

VIBRATION TESTING

ISTANBUL TERNIK ÜNIVERSETESI Austusta Capito

- UNIVERSITY of SHARJAH, UAE
- Istanbul Technical University
- Sabancı University
- Capacity development through (create cubesat ecosystem)
 - Science mission: star detection and sun observation
 - Imaging mission: earth and Space
 - Knowledge transfer
 - Infrastructure development (GSs and Lab facilities)
- Payload
 - X Ray detector
 - Optical camera
- Launched 3 January 2023,
- placed in to orbit on 16.2023 by D-Orbit OTV

SHARJAH SAT -1

Asarbarder Çaşıkış

CubeSat Training at SAASST in Sharjah, Clean Room and CubeSat Design Lab

UoS VHF/UHF GS Established March 2020

ISTANBUL TERNIK ÜNİVERSİTESİ Asərbərlər Çuşdaşı

ISTANBUL TERNIK ÜNİVERSİTESİ Asırlardır Çaplaş

CubeSat on a table

Austantin Capitop

ISTANBUL TERNIK ÜNIVERSITESI

Asirbardir Qupitup

VAN LAKE TURKİYE

ISTANBUL TERNİK ÜNİVERSİTESİ

Austinelle Capitop

ISTANBUL TERNIK ÜNIVERSITESI

Asarlandar Capitop

USTAL

ISKENDERUN BAY

- Full ADCS
- Good power budget

SW

PAUSAT1: 1.5M GSD at 500 km Earth Observation Mission

1.5 m GSD MS 16 U 25 kg

İTI

Asirbarder Qupitop

Rubidium Atomic Frequency Standard (RAFS) CubeSat

- RAFS Payload
- RAFS
 - RAFS signal transfer
- RAFS ve Sat thermal management
- 6U Structure
- OBC and interfaces
- EPS
 - Battery
 - Panels
 - PDCU
- Comm
 - UHF-UHF trcv, antenna
- ADCS, wheels

ISTANBUL TERNIK ÜNIVERSETESI

Asarbarder Capilop

n-LOTUSat

A 1U CUBESAT PROJECT

ISTANBUL TERNIK ÜNIVERSITESI

Austinelle Capitap

- "Nano Lean Satellite of Technical University"
- 1U cubesat project
- Developed by undergraduate students from with CanSat experience

ISTANBUL TERNIK ÜNIVERSITESI

Asarlander Dapósp

OUR GOALS

- To gain interdisciplinary experience in the development stages of a cubesat
- To practise aerospace engineering in undergraduate level
- To develop our own electronic systems & designs, and gain flight heritage to them

ISTANBUL TEKNİK ÜNİVERSİTESİ

Asarlandar Qapilap

PLAN-S SATELLITE & SPACE TECHNOLOGIES

ISTANBUL TERNIK UNIVERSITESI

Austriandin Quipilop

INVESTMENTS

We started building our R&D facility and it will be ready by the Q4 of 2022;

- 9000 m2 in total
- 10.000 class clean room
- 100.000 class clean room
- TVC, Vibration and Climatic Test Chambers/Equipments
- EMI/EMC & Antenna Measurement Laboratories
- · Electronic and Mechanical Laboratories

Asserbandler Quipilog

- Establishment Summer 2021
- IoT and EO Constellations
- Building tech demo missions
- 3U and 6U CubeSat

Ustritips://www.linkedin.com/posts/weareplans_weareplans-plans-selfie-activity-7046485868856918016-UuNT/?utm_source=share&utm_medium=member_ios

Post | LinkedIn

ISTANBUL TERNIK ÜNIVERSITESI

Asserbandler Quipiloop

ISTANBUL TERNIK U Aurlandir Capitop

Warroo/Australia 2023-07-31 UTC: 01:01:00

ISTANBUL TERNIK (Austanlar Capitop

USTAL

ISTANBUL TERNIK ÜNIVERSETESI

Assertantin Capitop

PLAN S

- 5 cubesat development and launches in 2 years
- All successfull, operational
- Self funded
- Own missions
- Utilize all the past knowledge available
- Employe the best in their field
- Test in orbit
- Improve as develop and operate
- Space X approach with all the external support and collaborations
- Commercial goals, using Space to enhance current ongoing operations

×

ø

ISTANBUL TERNIK ÜNIVERSITESI

Assertantin Capitop

CARL SAGAN

'All civilizations become either spacefaring or extinct'

• Since, in the long run, every planetary civilization will be endangered by impacts from space, every surviving civilization is obliged to become spacefaring--not because of exploratory or romantic zeal, but for the most practical reason imaginable: staying alive... If our long-term survival is at stake, we have a basic responsibility to our species to venture to other worlds.

Get ready for space

- Space Fussion Plants established
- Electricity from space to earth
- Minining from moon and asteroids
- Colonies, Industrial centers at LEO
- Main goal: To be a civilization living in the Solar System: develop reliable, capable, affordable spacecraft and space access to space (DO NOT STAY BEHIND!)

ISTANBUL TE Austantin Capitop

Spacecraft/Satellites (Mission) iTü

- Communication (most of the market, GEO-LEO)
- Earth Observation (most of the market, LEO)
- Navigation (GNSS)
- Meteorology, weather
- Space Observation, astronomy
- Biological
- Research, test (increased importance)
- Space Stations, manned spacecraft
- Planetary exploration
- CONSTELLATIONS

Asterlarder Capitaj

SATELLITE DEVELOPMENT

Satellite	MASS	COST	TIME
	(kgs)	Millions	(years)
Large	1000+	\$ 300 M+	10 +
Medium	500-1000	\$ 100 M+	46
Mini	100-500	\$ 10-100 M	35
Micro Sat	10-100	\$ 2-10 M	24
Nano Sat	1.0-10	\$ 0.1-2 M	13
Pico Sat	0.1-1	\$ 100 k	<1-2
Atto Sat	0.01 - 0.1	\$ 100 k	<1
Zepto Sat	0.001 -	\$ 100 k	<1
CANSATVERSITESI	0.3-0.9	100-900	0.1-0.5

- Small Sat is one or more spacecraft produced to serve an operational mission
 - with an affordable (as small a a possible) budget
 - constellations
 - In a acceptable timeframe (as quick as possible as mission requires)
 - Acces to Space !
 - Modularity, what is on the shelve
 - Mass manufacturing
 - Resiliency

- 7 Layers with 1000+ satellites

- Transport layer (datalink for inter-satellites and satellite-ground),
- Tracking layer (tracking of missiles), Custody layer (monitor)
- Large number of satellites realize mission assurance, responsibility

University Space Engineering Consortium

University Space Engineering Consortium

ISTANBUL TEKNIK ÜNIVERSITESI

Asirburdir Çişbiləş

Established as a legal society 23 Members from 13 Universities (7 Public + 6 Private) G. Assembly 19.09.2021 18.01.2023

ISTANBUL TERNIK ÜNIVERSITESI

We Look Forward To a Fruitful Cooperation

Towards being a civilization living in the Solar System

Alim Rüstem ASLAN

Istanbul Technical University Department of Space Engineering +90532 480 3449 aslanr@itu.edu.tr usttl.itu.edu.tr